精品国产一区二区三区久久狼5月99久久国产精品久|人妻久久久久久国产91久久精品久久精品|久久91av|久久久91精品国产一区二区|日韩熟女网|中文字幕一区二区精品|国产亚洲精品久久久久婷婷|91丨九色丨人妻大屁股|久久精片|国产精品午夜福利精品,精品久久久久久免费人妻,星空无限传媒国产区,国产精品 日韩专区

全部選擇
反選
反選將當(dāng)前選中的變?yōu)椴贿x,未選的全部變?yōu)檫x中。
華北
華東
華中
華南
東北
西北
西南
其他
取消
確定

學(xué)術(shù)譯介 | SER《種子增強:讓種子為修復(fù)做好準(zhǔn)備》

所屬地區(qū):廣東 - 云浮 發(fā)布日期:2025-04-10


?前 言?


本系列旨在譯介學(xué)術(shù)期刊《恢復(fù)生態(tài)學(xué)》特刊“生態(tài)修復(fù)鄉(xiāng)土植物種子標(biāo)準(zhǔn)”(2020)的英文論文以及其他相關(guān)學(xué)術(shù)資訊。“生態(tài)修復(fù)鄉(xiāng)土植物種子標(biāo)準(zhǔn)”由一系列文件組成,每一份文件都對鄉(xiāng)土植物種子供應(yīng)鏈的每個步驟進行了深入分析。下述文獻為《種子增強:讓種子為修復(fù)做好準(zhǔn)備》,描述了生態(tài)修復(fù)鄉(xiāng)土植物種子供應(yīng)鏈的種子增強環(huán)節(jié)。



種子增強:讓種子為修復(fù)做好準(zhǔn)備(Seed enhancement getting seeds restoration-ready)


?摘 要?


由農(nóng)業(yè)種業(yè)發(fā)展起來的種子增強技術(shù),如種子引發(fā)和種子包衣,是大多數(shù)農(nóng)作物和園藝種子的標(biāo)準(zhǔn)程序。然而,盡管這些處理方法對提高修復(fù)效果有潛在的好處,但針對鄉(xiāng)土植物種子的評估進程才剛剛開始。適用于鄉(xiāng)土植物種子的關(guān)鍵方法包括:(1)種子引發(fā),指種子在受控條件下水合;(2)種子包衣,指外部材料和化合物通過多種處理方式作用于種子。這些技術(shù)包括通常用于加速和同步萌發(fā),提高種子生活力,幼苗出苗,幼苗定植,并通過規(guī)范種子的大小和形狀,方便機械化地將種子運送到現(xiàn)場。種子增強技術(shù)目前在鄉(xiāng)土植物種子進行測試,以克服修復(fù)過程中的物流和生態(tài)障礙。然而,需要進一步的研究來擴大種子增強技術(shù)在更廣泛的物種、生態(tài)系統(tǒng)和地區(qū)的應(yīng)用,并評估創(chuàng)新的方法,如在種子包衣中加入有益的土壤微生物和植物生長調(diào)節(jié)劑。隨著鄉(xiāng)土植物種子增強技術(shù)的發(fā)展,這些方法需要能夠擴大規(guī)模,以提供全球種子修復(fù)所需的噸數(shù)。?


?關(guān)鍵詞?


種子團聚體、包衣、包殼、萌發(fā)、丸粒化、種子引發(fā)、種子技術(shù)



實踐意義

· 種子引發(fā)處理可以實現(xiàn)同步、快速和按需萌發(fā),促進幼苗定植,并賦予植物對多種壓力的抗逆性,從而提高植物在惡劣環(huán)境中的生活力。?

· 種子包衣技術(shù)可以改變田間應(yīng)用種子的形狀和大小,特別是對于小粒種子或具有復(fù)雜附屬物或形態(tài)復(fù)雜的種子,能夠改善種子的投放到位。?

· 種子包衣和引發(fā)處理可以用來輸送化合物,如萌發(fā)促進劑、保護劑和掠食者驅(qū)避劑,這些化合物有可能大大提高種子的出苗率和幼苗定植。?

· 種子包衣和引發(fā)處理可以用來拓寬潛在的種子萌發(fā)反應(yīng),作為一種對沖策略,以補償在受擾動系統(tǒng)的種床微氣候中經(jīng)常出現(xiàn)的極端空間和時間變異。?



介紹

與栽種幼苗相比,種子是進行生態(tài)修復(fù)最具成本效益的選擇,特別是在大規(guī)模或高生物多樣性的生態(tài)系統(tǒng)中(Pérez et al. 2019)。然而,投入到田間的種子中,成功定植并長成成熟植物的不到10%(James et al. 2011;Merritt et al. 2011;Ceccon et al. 2016)。鑒于鄉(xiāng)土植物種子的采購和生產(chǎn)面臨的挑戰(zhàn)和成本(Merritt & Dixon,2011),以及提高種子采集率對野生種群可能產(chǎn)生的負面影響(Nevill et al. 2018),如此高的失敗率是不可持續(xù)的,嚴(yán)重限制了以種子為基礎(chǔ)的修復(fù)工作在目前所需的規(guī)模上取得成功(Menz et al. 2013)。因此,市場對改進與直接播種相關(guān)的修復(fù)效果的技術(shù)和工藝有著新興的需求。?


基于種子的修復(fù)方法中,失敗率高的原因被歸因于生理、物流以及生態(tài)環(huán)境因素。這些因素包括種子生活力低、休眠、出苗受限、種子大小和形態(tài)的差異給種子混合物的處理和運送帶來挑戰(zhàn),以及修復(fù)地點環(huán)境條件的差異。因此,種子增強技術(shù)(通過人工處理種子以促進“按需萌發(fā)和定植”)成為一個急需研究和開發(fā)的領(lǐng)域,以提高鄉(xiāng)土植物種子批次的質(zhì)量、可投放性和可靠性,并賦予其應(yīng)對環(huán)境壓力(如濕度或溫度極端)和生態(tài)挑戰(zhàn)(如捕食、競爭和疾病)的韌性。?


然而,由于多種原因,種子增強技術(shù)在生態(tài)修復(fù)中受到的關(guān)注有限,包括:根據(jù)復(fù)雜多樣的鄉(xiāng)土植物種子類型對現(xiàn)有農(nóng)作物種子技術(shù)進行定制所需的大量研發(fā)工作,設(shè)備的初始成本較高,以及在推廣改良工藝方面存在障礙。然而,這些技術(shù)在農(nóng)作物和園藝種子供應(yīng)鏈中是標(biāo)準(zhǔn)特征,因為它們提供的益處遠遠超過了成本(Pedrini et al. 2017)。近年來,種子增強技術(shù)已經(jīng)為生態(tài)修復(fù)開發(fā),并在技術(shù)得到優(yōu)化和有效擴展的情況下,具有潛在的益處(Madsen et al. 2016a;Erickson et al. 2017)。?


本綜述的目的是提供一個廣泛且實用的概述,介紹目前在農(nóng)業(yè)中開發(fā)的種子增強技術(shù)(種子引發(fā)和種子包衣),并舉例說明這些技術(shù)在生態(tài)修復(fù)中的應(yīng)用。



種子引發(fā)

種子引發(fā)是指在播種前對種子進行控制性水合,使種子開始萌發(fā)過程,但在胚根或胚軸伸展之前重新干燥(Heydecker & Coolbaer 1977;Bradford 1986)。引發(fā)可以減少種群內(nèi)種子萌發(fā)率的變異,確保更均勻和快速的萌發(fā)和定植(Taylor et al. 1998; Jisha et al. 2013; ?Paparella et al. 2015; Bhanuprakash & Yogeesha 2016)。它還可以提高種子對熱、濕度和滲透壓(鹽)壓力的抗性(Bruggink 2005),因此可能有助于植物在惡劣環(huán)境中的定植(Kildisheva ?2019)。 ?


?引發(fā)過程?


種子引發(fā)過程中發(fā)生的生理過程(見附錄 S1)始于水分吸收。水分吸收(或吸脹)受種皮透水性以及與生長基質(zhì)的接觸面積和水力傳導(dǎo)性的調(diào)節(jié)(Koller & Hadas 1982;Bradford ?1995)。種子的水分吸收可以分為三個階段:(1)吸脹或水分的物理吸收;(2)代謝活動的“激活”;(3)胚和胚根/胚軸的生長和有絲分裂的開始(圖1; Taylor et al. 1992; Bradford ?1995)。


圖1:種子吸水過程可以分為三個階段:吸水、萌發(fā)啟動(激活)和胚和胚根/子葉生長(生長)。在種子引發(fā)過程中,吸脹會在生長期開始時中斷,然后將種子曬干儲存起來。


為了發(fā)生吸脹,種皮必須對水具有透水性(Kildisheva et al. 2020)。對于種皮不透水的種子,必須首先通過打開水孔或通過人工手段(如割痕或熱水處理)來實現(xiàn)透水性(Baskin ?& Baskin 2014)。一旦種子具有透水性,吸脹通常在數(shù)小時或數(shù)天內(nèi)發(fā)生,并且在代謝活動開始時水分吸收會減少(Bradford 1995)。 ?


在水分吸收的前兩個階段,種子對脫水具有耐受性,但一旦胚胎生長已經(jīng)開始(例如第三階段),它們就會變得對脫水敏感(Tayloret al. 1992)。因此,有效的引發(fā)處理會導(dǎo)致種子在胚胎發(fā)育之前吸收水分并啟動萌發(fā)過程,使種子準(zhǔn)備好完成萌發(fā),但保留能夠在輸送到修復(fù)地點之前脫水和存儲的能力,而不會造成主要的生活力損失。最佳的引發(fā)持續(xù)時間可能取決于幾個因素,包括引發(fā)方法、物種生物學(xué)、種子大小、休眠狀態(tài)和萌發(fā)速度(Powell et ?al. 1984;Karssen et al. 1989;Bradford 1995;Bruggink 2005)。同樣,種子在變得對脫水敏感之前萌發(fā)的程度也可能因物種而異。例如,對于大多數(shù)物種,如果引發(fā)已經(jīng)引起了可見的胚根出現(xiàn),那么可以假定種子的生活力已經(jīng)受到了負面影響(Tarquis & Bradford 1992; McDonald 1998;Bruggink et al. 1999);然而,一些沙漠物種的種子甚至在胚根完全出現(xiàn)并開始生根延伸后仍然能夠耐受脫水(Gutterman 2002)。種子引發(fā)可以通過多種不同的手段來實現(xiàn),包括水、化學(xué)、滲透和固體基質(zhì)引發(fā)(Taylor et al. 1992;Bruggink 2005;Paparella ?et al. 2015)。 ?


水引發(fā)


水引發(fā)是指種子在純水中水合,通常在有氧條件下(圖2),并且在被認為有利于萌發(fā)的溫度下進行(Ward & Powell 1983;Coolbear & McGill 1990;Grayet al. 1990;Harriset al. ?1999)。由于引發(fā)的程度受處理時間的控制,水引發(fā)是引發(fā)技術(shù)中最不精確的一種,并且常與其他處理方法(如化學(xué)引發(fā)或激素引發(fā))結(jié)合使用,或者在育苗條件下立即播種之前進行(如“浸泡”,Lunaet al. 2014)。


圖 2:西澳大利亞大學(xué)和國王公園植物園開發(fā)了定制的種子引發(fā)裝置,用于對種子進行水引發(fā)、滲透引發(fā)和化學(xué)引發(fā)。這個六缸裝置能夠處理數(shù)千種本地物種和不同形態(tài)的1-2公斤凈種子(Erickson et al. 2019;Kildisheva,2019)。這些缸被填滿了種子引發(fā)液,并連接到一個空氣泵(海萊空氣泵,IPX4,中國廣東;流量約為3-4升/分鐘),以促進引發(fā)過程中的通氣(圖片修改自Kildisheva, 2019)。?


化學(xué)引發(fā)或激素引發(fā) ?


化學(xué)引發(fā)或激素引發(fā)可以使用促進萌發(fā)的物質(zhì)(如細胞分裂素、茉莉酸、赤霉素和卡里金)、抑制劑(如 ABA)或植物保護化合物(如水楊酸、殺菌劑)來改善休眠物種的種子萌發(fā),控制萌發(fā)時機以優(yōu)化吸收,并保護種子免受生物和非生物脅迫(Carrow & Duncan 2011;Górnik et al. 2014;Badrakh 2016;Erickson et al. 2017;Call 2018)。 ?


滲透引發(fā)


滲透引發(fā)是一種廣泛采用的引發(fā)方法,它依賴于在水勢低于0 MPa的滲透溶液中使用滲透劑來實現(xiàn)對種子的控制性水合。這通過使用鹽類(如KNO3、NaCl、CuSO4)、聚乙二醇(PEG)或甘露醇(C6H14O6)來實現(xiàn)(Yadav et al. 2011;Amirkhiz et al. 2012)。 ?


固體基質(zhì)引發(fā)


固體基質(zhì)引發(fā)是另一種方法,其中種子在用水潤濕的固體基質(zhì)(如堆肥、粘土、泥炭、沙子或蛭石)中進行引發(fā),以達到所需的水勢(Taylor et al. 1988)。在某些情況下,基質(zhì)引發(fā)比滲透引發(fā)更有效(Harman & Taylor 1988;Taylor et al. 1988),這可能是因為該過程被認為模擬了自然種床條件,并且在整個引發(fā)過程中氧氣可以自由地供給種子。基質(zhì)引發(fā)已被證明通過提高園藝和野生植物種子的萌發(fā)和出苗產(chǎn)生了積極的效果(Bosma et al. 2002; Madsen et al. 2018),并且有可能與其他種子技術(shù)結(jié)合使用。 ?


種子引發(fā)材料和設(shè)備 ?


在種子工業(yè)中,水引發(fā)、滲透引發(fā)或化學(xué)引發(fā)通過多種方法實現(xiàn),如用聚乙二醇(PEG)或其他溶質(zhì)潤濕的培養(yǎng)盤;在有氧溶液(如 PEG、無機鹽、甘露醇)中孵育,通常在大型立式圓筒內(nèi)進行;或者膜引發(fā),PEG 和種子由半透膜分隔,以改善維持種子生活力所需的通氣(Bruggink 2005)。已經(jīng)開發(fā)了小規(guī)模的引發(fā)裝置用于修復(fù)用途,如Erickson et al. 2019 描述了一種為礦區(qū)修復(fù)開發(fā)的六缸引發(fā)裝置(圖2)。該裝置可用于水引發(fā)、滲透引發(fā)和化學(xué)引發(fā),能夠處理1-2公斤凈種子。它已在不同本地物種的多種滲透勢、通氣率和種子形態(tài)條件下進行了測試,并在處理效果上證明了其有效性(Erickson et al. 2019;Kildisheva 2019)。


固體基質(zhì)引發(fā)可以通過將種子儲存在基質(zhì)介質(zhì)中(如泥炭、蛭石)來處理大量種子,通常在一個圍繞中心軸旋轉(zhuǎn)的滾筒內(nèi),以確保水分均勻分布(Rowse 1996;Bruggink 2005)。另一種方法是“滾筒引發(fā)”,即將種子與特定數(shù)量的水混合,在靜止或旋轉(zhuǎn)的滾筒中將種子水分含量提高到所需水平(Khan 1992;Bruggink 2005)。


?生態(tài)修復(fù)中的種子引發(fā)?


盡管引發(fā)技術(shù)在農(nóng)業(yè)行業(yè)被廣泛使用,但在生態(tài)修復(fù)中使用鄉(xiāng)土植物物種的例子仍然有限,盡管其具有顯著的潛在益處。種子引發(fā)已成功用于刺激先鋒樹種的萌發(fā),這些樹種通常用于熱帶森林(Rodrigues et al. 2009)。例如,水引發(fā)(在水中浸泡16小時)和滲透引發(fā)(聚乙二醇-PEG 8000,-0.8 MPa,處理56與88小時)改善了先鋒樹種毛可可(Guazuma ulmifolia)樹苗的定植(Brancalion & Tay 2010)。引發(fā)還誘導(dǎo)了墨西哥韋拉克魯斯熱帶半落葉森林的幾種本地樹種,如雨樹(Albizia saman)、洋椿(Cedrela odorata)、象耳豆 (Enterolobium cyclocarpum)和大葉桃花心木(Swietenia macrophylla)的快速萌發(fā)。自然引發(fā)(人工埋種,類似于上述基質(zhì)引發(fā))對雨樹、洋椿和大葉桃花心木有效,而水引發(fā)增強了象耳豆種子的表現(xiàn)(Peraza-Villarreal et al. 2018)。Hardegree 和 Van Vactor(2000)報告說, 基質(zhì)引發(fā)提高了四種北美叢生禾草的田間總出苗率,如瓶刷披堿草(Elymus elymoides)、 粗穗披堿草(Elymus lanceolatus)、偏生早熟禾(Poa sandbergii)和擬鵝觀草(Pseudoroegneria ?spicata),但其對萌發(fā)的影響范圍取決于種子批、播種日期和土壤類型。 ?


引發(fā)技術(shù)已與其他播種前技術(shù)結(jié)合使用,例如,Wagner et al. 2011研究了歐洲鈣質(zhì)草地上10種難以定植的物種對滲透引發(fā)(PEG 6000,滲透勢為-21.0 MPa)、滲透引發(fā)與赤霉酸 (GA3)結(jié)合或冷層積處理的反應(yīng)。滲透引發(fā)(北疆風(fēng)鈴草?Campanula glomerata、蕨葉蚊子草Filipendula vulgaris和金錢半日花Helianthemum nummularium)和滲透催芽+ GA3(闊葉百里香?Thymus pulegioides)都能提高萌發(fā)率。有趣的是,在滲透引發(fā)溶液中添加GA3在次優(yōu)條件下(如干旱、光/暗)促進了萌發(fā),或替代了一些物種對溫度波動的需求,從而將測試物種的萌發(fā)“生態(tài)位”擴展到更廣泛的環(huán)境條件(Wagner et al. 2011;Lewandrowski et al. ?2018;Kildisheva et al. 2019)。 ?


在環(huán)境條件高度隨機的地區(qū),如干旱地區(qū),促進在更廣泛條件下更快速的萌發(fā)能力可能特別重要(Pedrero-López et al. 2016;Erickson et al. 2017;Kildisheva 2019)。Erickson et al. ?2017和Kildisheva et al. 2019 報告了在礦區(qū)修復(fù)中將種子引發(fā)整合到修復(fù)工具包中的潛力,無論是單獨使用還是與其他種子增強技術(shù)結(jié)合使用。用卡里金內(nèi)酯(源于煙霧的萌發(fā)刺激物)引發(fā)顯示出提高針狀硬草(Triodia pungens L.)的萌發(fā)和出苗效果(Erickson et al. 2017; Kildisheva 2019)——這種植物是澳大利亞西部皮爾巴拉生物區(qū)的關(guān)鍵物種(Nicholas et al. ?2009)。引發(fā)在與種子包衣結(jié)合使用時特別有效,這可能是因為它通過擴展植物利用可用降水的能力,更有效地促進根系發(fā)育,從而在日益干旱的條件下增加生活力(Kildisheva 2019)。?

?

Madsen et al. 2018 展示了如何將固體基質(zhì)引發(fā)(-0.5到-2.5 MPa,持續(xù)長達12天)與種子包衣技術(shù)(如種子“莢”)有效結(jié)合,以改善在亞利桑那州凱巴布高原播種的兩種草種(Poa ?fendleriana?和?P. spicata)的出苗和定植密度。結(jié)果表明,引發(fā)種子莢的出苗速度比未處理種 子快66-82%。此外,來自引發(fā)種子莢的P. spicata幼苗的最終密度是未處理種子的2.9到3.8 倍。 因此,盡管在修復(fù)中的使用證據(jù)尚需廣泛測試,種子引發(fā)有潛力改善修復(fù)結(jié)果,特別是當(dāng)與其他種子增強技術(shù)結(jié)合使用時。然而,將引發(fā)技術(shù)有效應(yīng)用于修復(fù)實踐需要深入了解特定物種的種子生物學(xué)(Hardegree 1996),依賴于地點的吸收限制,以及種子投放方法,以確保成本效益的整合(Bujalski & Nienow 1991)。?



種子包衣

本地物種的種子在形狀和大小上差異很大,給處理和機械播種帶來了挑戰(zhàn),例如流動性不足和架橋(種子交聯(lián)并阻塞種子投放系統(tǒng))。通過在種子上施加外部材料,種子批次可以變得更均勻,更容易在修復(fù)地點進行操作(Hoose et al. 2019)。此外,人造包衣可以裝載活性成分,一旦釋放到種子或周圍土壤中,就能保護種子免受病原體的侵害,并改善萌發(fā)、生存和生長(Taylor et al. 1998; Halmer, 2008)。


種子包衣已經(jīng)被農(nóng)業(yè)行業(yè)廣泛應(yīng)用了數(shù)十年,但到目前為止,其在鄉(xiāng)土植物種子上的應(yīng)用仍然局限于實驗試驗。使用鄉(xiāng)土植物進行生態(tài)修復(fù)的種子包衣實施過程中,一個重要障礙是難以獲得大多由專門從事農(nóng)業(yè)和園藝種子包衣的農(nóng)用化學(xué)品行業(yè)保密的專業(yè)知識和種子包衣技術(shù)(Pedrini et al. 2017)。 ?


種子包衣類型、材料和設(shè)備?


三種主要的種子包衣已經(jīng)為農(nóng)業(yè)、林業(yè)和園藝物種開發(fā),這些對生態(tài)修復(fù)也具有相關(guān)性(圖 3)。這些包括薄膜包衣,在種子上施加一層薄薄的材料(種子重量的不到 5-10%);包殼,添加增加種子重量和體積的材料,但仍能識別出原始種子的形狀;和丸粒化,添加材料使種子形成橢圓球形,初始種子的形狀無法辨認(Taylor et al. 1998;Halmer,2008)。近年來,為鄉(xiāng)土植物種子開發(fā)和改良了進一步的種子包衣變種,例如團聚體或復(fù)合體,其中多粒種子聚集成一個單一投放單位(Madsen et al. 2012;Hoose et al. 2019)(圖4),以及擠出丸粒化,種子與相對大量的材料混合后,通過擠出機形成并切割成所需形狀(通常為圓柱形)(Madsen et al. 2016b, 2018;Brown et al. 2019)。為了避免混淆,修復(fù)研究人員和實踐者應(yīng)根據(jù)當(dāng)前公認的農(nóng)業(yè)定義一致地定義種子包衣類型,并允許與農(nóng)農(nóng)作物和園藝種子公司及科學(xué)家進行建設(shè)性的合作,推動這項技術(shù)的發(fā)展。


圖3:種子包衣設(shè)備和種子包衣類型的例子。圖片修改自Pedrini et al. 2017。


圖4:用硅藻土和聚乙烯醇制成的斜脈桉(Eucalyptus loxophleba)團聚物(每顆顆粒約含5粒種子)。?


在種子行業(yè)中,有三種主要的設(shè)備(圖3):流化床,用于薄膜包衣;旋轉(zhuǎn)包衣機,常用于鄉(xiāng)土植物種子;以及平底包衣機,用于非常小的種子(Gregg & Billups 2010;Bennett & Lloyd 2015)。種子團聚體可以用旋轉(zhuǎn)包衣機或平底包衣機制造。擠出丸粒化則需要專門的機器——擠出機,類似于食品行業(yè)用于制作意大利面的機器(Watkins 2014;Madsen et al. ?2016b)。 ?


對于許多本地物種來說,未經(jīng)事先減少或去除外部結(jié)構(gòu)的凈種子單元并不總是適合進行種子包衣(Guzzomi et al. 2016;Pedrini et al. 2019),有時需要進行大量的種子處理(Frischie et al. 2020)。 ?


用于提供種子包衣的物理、熱和機械性能的材料和化合物大致可以分為兩類:粘合劑和填料。粘合劑通常是纖維素和樹膠等聚合物,它們粘附在種子上并能保持其他材料;填料是用于增加原始種子體積和重量的粉狀材料(如粘土、石灰)。更廣泛的活性成分,無論是生物的還是化學(xué)的,都可以被添加到包衣中,以提高種子生生活力(如通過保護種子免受病原體和掠食者的侵害)、幫助萌發(fā)(如營養(yǎng)物質(zhì)、激素、植物生長促進劑、共生體)以及提高抗壓能力(如水楊酸、有益微生物)(Taylor et al. 1998;Rocha et al. 2019)。?


種子包衣在生態(tài)修復(fù)中的應(yīng)用 ?


種子包衣技術(shù),特別是與有益的生物和化學(xué)活性成分或保護劑結(jié)合使用時,可以通過解決限制植物在某一地點吸收的特定挑戰(zhàn)(如土壤濕度變化、土壤養(yǎng)分低、害蟲和疾病)來促進基于種子的修復(fù)項目的成功(表1)(Gornish et al. 2019)。例如,在美國西北部火災(zāi)后修復(fù)中,使用含有土壤表面活性劑的擬鵝觀草(Pseudoroegneria spicata)種子包衣,改善了在抗水性土壤中的幼苗出苗率和植物生活力(Madsen et al. 2013)。同樣,在青藏高原退化草地上,包衣中接種的微生物提高了兩種植物的幼苗出苗率和生活力(Liu et al. 2010),而在澳大利亞,包衣中含有水楊酸的種子提高了本地草種的生生活力和生長(Pedrini,2019)。種子包衣中加入的種子捕食者驅(qū)避劑降低了嚙齒動物的種子消耗率,并改善了植物的定植(Taylor et al. 2020;Pearson et al. 2019)。 ?


表1. 2006 年至2020年發(fā)表在同行評議期刊中關(guān)于種子包衣應(yīng)用于本地物種的研究。



種子包衣也被測試作為控制萌發(fā)時間的方法,例如,Richardson et al. 2019通過應(yīng)用脫落酸(ABA)推遲P. spicata的萌發(fā)時間,從晚秋推遲到春季,當(dāng)時幼苗出苗和植物定植的條件會更有利。 ?


在對P. spicata進行多種子團聚處理的測試中,該處理提高了在包殼土壤中的幼苗出苗率和植物生長(Madsen et al. 2012)。這種方法還提高了小種子物種三齒蒿(Artemisia tridentata)的處理和播種效率,同時在實驗室條件下增加了萌發(fā)率,但在田間出苗中未檢測到這種改進(Hoose et al. 2019)。然而,Anderson (2020)在美國大盆地進行的更大規(guī)模田間試驗中發(fā)現(xiàn),團聚技術(shù)與未處理種子相比,提高了三齒蒿的幼苗出苗率和植物定植率。擠壓顆粒已在旱地系統(tǒng)中進行測試。例如,使用活性炭制成的擠壓顆粒保護了本地草種(Elymus elymoides、P. spicata、Poa secunda)和灌木(A. tridentata)的種子免受苗前除草劑的侵害,并在某些情況下,與未處理的對照組相比,促進了更高的幼苗密度、高度和生物量(Madsen et al. 2014;Clenet et al. 2019)。


其他化合物也被添加到擠壓顆粒中以解決其他特定的定植限制。當(dāng)將關(guān)鍵灌木三齒蒿(A. tridentata)的種子與超級吸水聚合物一起加入擠壓顆粒中時,幼苗的出苗率也得到了改善,特別是在包殼土壤中,這大概是由于顆粒的膨脹作用將種子抬升到土壤中,并創(chuàng)造了一個富含水分的微環(huán)境(Madsen et al. 2016b)。 ?


然而,這些技術(shù)的有效性可能因地點、年份、物種、包衣配方、應(yīng)用方法和所評估的植物群落階段而有所不同(Williams et al. 2016;Davies et al. 2018;Kildisheva et al. 2019)。


此外,現(xiàn)有研究的范圍和修復(fù)項目中失敗播種實驗的可能未報告,使得評估這些技術(shù)的真實有效性變得困難。基于農(nóng)業(yè)種子文獻,其中包括關(guān)于包衣對種子萌發(fā)和出苗負面影響的報告(Pedrini et al. 2017),開發(fā)有效的技術(shù)可能需要時間和大量投資。為了使開發(fā)工作取得成功,科學(xué)家和實踐者需要分享與鄉(xiāng)土植物種子包衣相關(guān)的失敗和挑戰(zhàn),以幫助識別潛在的限制,并改善對成功包衣配方相關(guān)特定生態(tài)或物流限制因素的一般理解。 ?


在一些情況下,種子包衣被外包給私人公司,且包衣規(guī)格未公開(Turner et al. 2006;Mangold & Sheley,2007),這使得復(fù)制這些方法變得困難。只要可行,種子科學(xué)家和用戶 應(yīng)與愿意分享材料和方法的組織和公司合作,或者嘗試獨立開發(fā)種子包衣配方和方案。例如,最近發(fā)布的一個開放獲取工具為開發(fā)種子包衣方案(包殼和丸粒化)提供了實際的逐步指南,以開發(fā)特定物種的種子包衣處理方法(Pedrini et al. 2018)。該工具可用于測試包衣方法、材料和活性成分,使用現(xiàn)成的種子包衣設(shè)備和化學(xué)試劑。



種子增強技術(shù)在生態(tài)修復(fù)中的經(jīng)濟性

盡管有一些成功應(yīng)用種子吸脹和包衣處理本地物種種子的證據(jù),但大多數(shù)工作是在受控的實驗環(huán)境中進行的,很少研究這些技術(shù)的使用和可擴展性的成本和效益。估算種子包衣經(jīng)濟性的基線方法應(yīng)比較處理種子和未處理種子中每株成功定植的植物的成本(Pearson et al. ?2019)。此外,許多外部變量也應(yīng)考慮在內(nèi),不僅僅是種子包衣材料和人員時間的成本。例如,如果包衣改善了種子的彈道特性,使種子播撒范圍更廣,將減少播種時間和設(shè)備使用(如減少機械化作業(yè)次數(shù))。這些好處應(yīng)在生態(tài)修復(fù)中的種子包衣成本/效益評估中加以考慮 (Hoose et al. 2019),以促進種子增強技術(shù)的規(guī)模化采用。?



快速同步萌發(fā)總是更好嗎??

使用種子增強技術(shù)的風(fēng)險分散策略?

土壤種子庫(等待修復(fù)播種)可能會在土壤水分可用性和溫度方面表現(xiàn)出相對較高的空間變異性(Hardegree et al. 2020),并且常常有需要在萌發(fā)和出苗前很久就進行播種的物流限制(Rajagopalan & Lall,1998;Eiswerth & Scott Shonkwiler,2006;Boyd & Lemos,2015; Hardegree et al. 2018)。此外,許多修復(fù)地點存在具有挑戰(zhàn)性的土壤和環(huán)境復(fù)雜性,在嚴(yán)重退化的情況下,這些復(fù)雜性可能與自然參照地點條件有很大不同(Seastedt et al. 2008;Coates ?et al. 2016)。這些挑戰(zhàn)包括人為管理干擾,如采礦或放牧,以及來自入侵物種的競爭。 ?


無論干擾的來源如何,自然環(huán)境的變異性也會對適合定植的微環(huán)境的位置和時間在任何特定年份施加嚴(yán)重限制(Hardegree et al. 2016,2018)。各種種子增強技術(shù)可以設(shè)計為改變特定種群的萌發(fā)行為,以補償因環(huán)境變化而降低的成功定植概率(Angevine & Chabot,1979)。然而,可能更有利的是擴大(而不僅僅是改變)一種理想物種的萌發(fā)行為(Madsen et al. 2016a; Erickson et al. 2017;Davies et al. 2018;Hardegree et al. 2020)。這種方法可以提供一種風(fēng)險分散能力,以補償因生態(tài)干擾和退化因素導(dǎo)致的環(huán)境和土壤變異性(Davies et al. 2018; Lewandrowski et al. 2018;Kildisheva, 2019)。種子吸脹和包衣可以用于加速或延遲萌發(fā)反應(yīng),縮小或擴大種群內(nèi)種子萌發(fā)率的變異性,或補償不利的場地條件(Hardegree, 2002; Madsen et al. 2016a;Kildisheva, 2019)。



結(jié)論

在使用直接播種進行大規(guī)模修復(fù)時,成功將繼續(xù)取決于種子的高效有效利用。種子增強技術(shù),雖然在生態(tài)修復(fù)領(lǐng)域處于初期階段,但可能會像對農(nóng)作物物種所取得的成就一樣,在田間定植方面提供重大改進。我們已經(jīng)描述了個別種子處理如何加速、延遲或錯開田間萌發(fā)和出苗,但所有這些效果中的任何一個或全部都需要根據(jù)場地和當(dāng)?shù)貧夂驐l件來定制。這些處理不應(yīng)為了新穎性或創(chuàng)新而不加選擇地使用,而是需要經(jīng)過驗證的好處,調(diào)度能夠針對特定的生態(tài)或物流限制,并為每顆種子提供最佳的萌發(fā)、出苗和成功定植機會。因此,種子增強技術(shù)的開發(fā)和使用的有效性取決于致力于了解和解決限制植物從種子吸收的物種和場地特定挑戰(zhàn)的專門研究和實施計劃。因此,種子增強技術(shù)必須成為更廣泛的修復(fù)戰(zhàn)略的一部分,該戰(zhàn)略整合了場地條件、物種可用性和物種表現(xiàn)的相關(guān)問題。



致謝

S.P.和 K.D.感謝澳大利亞政府通過澳大利亞研究理事會礦區(qū)修復(fù)工業(yè)轉(zhuǎn)型培訓(xùn)中心(項目編號ICI150100041)的支持。A.B.感謝意大利教育、大學(xué)和研究部(MIUR)的支持:卓越系列計劃(2018–2022)——帕維亞大學(xué)生物學(xué)與生物技術(shù)系“L. Spallanzani”部門。作者還要感謝國際種子修復(fù)網(wǎng)絡(luò)的董事會成員,在計劃和準(zhǔn)備手稿期間提供的支持和幫助,感謝Adam Cross 博士在手稿初稿階段提供的幫助,以及匿名審稿人的評論和反饋,極大地提高了手稿的質(zhì)量。?



參考文獻

Amirkhiz KF, Omidi H, Heshmati S, Jafarzadeh L (2012) Study of black cumin (Nigella sativa L.) germination attributes and seed vigur under salinity stress by osmopriming accelerators pretreatment. Seed Science and Technology 10: 299–310?

Anderson RA (2020). Novel techniques to improve restoration of native rangeland species. MSc Thesis. Brigham Young University, Provo, Utah.?

Angevine MW, Chabot BF (1979) Seed germination syndromes in higher plants. Pages 188206. In: OT Solbrig, S Jain, GB Johnson, PH Raven (eds) Topics in plant biology. Columbia University Press, New York?

Badrakh T (2016) Effects of abscisic acid (ABA) on germination rate of three rangeland species. Brigham Young University, Provo, Utah?

Baskin CC, Baskin JM (2014) Ecology, biogeography, and evolution of dormancy and germination. Elsevier, Academic Press, San Diego, California?

Bennett GM, Lloyd J (2015) Seed inoculation, coating and precision pelleting: science, technology and practical applications. Taylor and Francis Group, Boca Raton, Florida?

Bhanuprakash K, Yogeesha HS (2016) Seed priming for abiotic stress tolerance: an overview. Pages 103–117. In: Abiotic stress physiology of horticultural crops. Springer India, New Delhi, India?

Bosma TL, Cole JC, Conway KE, Dole JM (2002) Solid matrix priming hastens Canterbury bells seed germination. HortTechnology 12: 268–270?

Boyd CS, Lemos JA (2015) Evaluating winter/spring seeding of a native perennial bunchgrass in the sagebrush steppe. Rangeland Ecology & Management 68: 494–500?

Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21: 1112?

Bradford KJ (1995) Water relations in seed germination. Pages 351–396. In: J Kigel, G Galili (eds) Seed development and germination. Marcel Dekker, New York?

Brancalion PHS, Tay D, Novembre ADLC, Rodrigues RR, Marcos Filho J (2010) Priming of pioneer tree Guazuma ulmifolia (Malvaceae) seeds evaluated by an automated computer image analysis. Scientia Agricola 67: 274–279?

Brown VS, Ritchie AL, Stevens JC, Harris RJ, Madsen MD, Erickson TE (2019) Protecting direct seeded grasses from herbicide application: can new extruded pellet formulations be used in restoring natural plant communities? Restoration Ecology 27: 488–494?

Bruggink GT (2005) Flower seed priming, pregermination, pelleting and coating. Pages 249262. In: MB McDonald, FY Kwong (eds) Flower seeds: biology and technology. CABI, Wallingford?

Bruggink GT, Ooms JJJ, van der Toorn P (1999) Induction of longevity in primed seeds. Seed Science Research 9: 49–53?

Bujalski W, Nienow AW (1991) Large-scale osmotic priming of onion seeds: a comparison of different strategies for oxygenation. Scientia Horticulturae 46: 13–24?

Call RS (2018) Emerging seed enhancements to reduce the risk of sagebrush post-fire seeding failure. Brigham Young University, Provo, Utah?

Carrow RN, Duncan RR (2011) Best management practices for saline and sodic turfgrass soils: assessment and reclamation. CRC Press, Boca Raton, Florida?

Ceccon E, González EJ, Martorell C (2016) Is direct seeding a biologically viable strategy for restoring forest ecosystems? Evidences from a meta-analysis. Land Degradation and Development 27: 511–520?

Clenet DR, Davies KW, Johnson DD, Kerby JD (2019) Native seeds incorporated into activated carbon pods applied concurrently with indaziflam: a new strategy for restoring annual-invaded communities? Restoration Ecology 27: 738–744?

Coates PS, Ricca MA, Prochazka BG, Brooks ML, Doherty KE, Kroger T, Blomberg EJ, Hagen CA, ?azza ML (2016) Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems. Proceedings of the National Academy of Sciences 113: 12745–12750?

Coolbear P, McGill CR (1990) Effects of a low-temperature pre-sowing treatment on the germination of tomato seed under temperature and osmotic stress. Scientia Horticulturae 44: 43–54?

Davies KW, Boyd CS, Madsen MD, Kerby J, Hulet A (2018) Evaluating a seed technology for sagebrush restoration across an elevation gradient: support for bet hedging. Rangeland Ecology and Management 71: 19–24?

Eiswerth ME, Scott Shonkwiler J (2006) Examining post-wildfire reseeding on arid rangeland: a multivariate tobit modelling approach. Ecological Modelling 192: 286–298?

Erickson TE, Mu?oz-Rojas M, Kildisheva OA, Stokes BA, White SA, Heyes JL, et al. (2017) Benefits of adopting seed-based technologies for rehabilitation in the mining sector: a Pilbara perspective. Australian Journal of Botany 65: 6?

Erickson TE, Munoz-Rojas M, Guzzomi AL, Masarei M, Ling E, Bateman AM, et al. (2019) A study of seed-use technology development for Pilbara mine site rehabilitation. Pages 679–69246. In: AB Fourie, M Tibbett (eds) Proceedings of the 13th International Conference on Mine Closure. Australian Centre for Geomechanics, Perth?

Frischie S, Miller A, Kildisheva OA, Pedrini S (2020) Native seed processing and quality testing. Restoration Ecology 28: S255–S264?

Górnik K, Badowiec A, Weidner S (2014) The effect of seed conditioning, short-term heat shock and salicylic, jasmonic acid or brasinolide on sunflower (Helianthus annuus L.) chilling resistance and polysome formation. Acta Physiologiae Plantarum 36: 2547–2554?

Gornish E, Arnold H, Fehmi J (2019) Review of seed pelletizing strategies for arid land restoration. Restoration Ecology 27:1206–1211?

Gray DH, Steckel JRA, Hands LJ (1990) No responses of vegetable seeds to controlled hydration. Annals of Botany 66: 227–235?

Gregg BBR, Billups G (2010) Seed coating and pelletizing. Pages 818–834. In: Seed conditioning, Vol. 2. Science Publishers, Enfield, New Hampshire?

Gutterman Y (2002) Minireview: survival adaptations and strategies of annuals occurring in the Judean and Negev deserts of Israel. Israel Journal of Plant Sciences 50: 165–175?

Guzzomi AL, Erickson TE, Ling KY, Dixon KW, Merritt DJ (2016) Flash flaming effectively removes appendages and improves the seed coating potential of grass florets. Restoration Ecology 24: S98–S105?

Halmer SP (2008) Seed technology and seed enhancement. Acta Horticulturae 771: 17–26?

Hardegree SP (1996) Optimization of seed priming treatments to increase low-temperature germination rate. Journal of Range Management 49: 87–92?

Hardegree SP (2002) Variability in thermal response of primed and non-primed seeds of squirreltail [Elymus elymoides (Raf.) Swezey and Elymus multisetus (J. G. Smith) M. E. Jones]. Annals of Botany 89: 311–319?

Hardegree S, Van Vactor SS (2000) Germination and emergence of primed grass seeds under field and simulated-field temperature regimes. Annals of Botany 85: 379–390?

Hardegree SP, Sheley RL, Duke SE, James JJ, Boehm AR, Flerchinger GN (2016) Temporal variability in microclimatic conditions for grass germination and emergence in the sagebrush steppe. Rangeland Ecology & Management 69: 123–128?

Hardegree SP, Abatzoglou JT, Brunson MW, Germino MJ, Hegewisch KC, Moffet CA, Pilliod DS, Roundy BA, Boehm AR, Meredith GR (2018) Weather-centric rangeland revegetation planning. Rangeland Ecology & Management 71: 1–11?

Hardegree SP, Sheley RL, James JJ, Reeves PA, Richards CM, Walters CT, Boyd CS, Moffet CA, Flerchinger GN (2020) Germination syndromes and their relevance to rangeland seeding strategies in the intermountain Western United States. Rangeland Ecology & Management 73: 334–341?

Harman GE, Taylor AG (1988) Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathology 78: 520?

Harris D, Joshi A, Khan PA, Gothkar P, Sodhi PS (1999) On-farm seed priming in semi-arid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Experimental Agriculture 35: 15–29?

Heydecker W, Coolbaer P (1977) Seed treatments for improved performance survey and attempted prognosis. Seed Science Technology 5: 353–425?

Hoose BW, Call RS, Bates TH, Anderson RM, Roundy BA, Madsen MD (2019) Seed conglomeration: a disruptive innovation to address restoration challenges associated with small-seeded species. Restoration Ecology 27:959–965?

James JJ, Svejcar TJ, Rinella MJ (2011) Demographic processes limiting seedling recruitment in arid grassland restoration. Journal of Applied Ecology 48: 961–969?

Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum 35: 1381–1396?

Karssen CM, Haigh A, Van der Toorn P, Weges R (1989) Physiological mechanisms involved in seed priming. In: RB Taylorson (ed) Recent advances in the development and germination of seeds. Springer US, Boston, Massachusetts?

Khan AA (1992) Preplant physiological seed conditioning. Horticultural Reviews 131–181?

Kildisheva OA (2019) Improving the outcomes of seed-based restoration in cold and hot deserts: an investigation into seed dormancy, germination, and seed enhancement. University of Western Australia, Perth, Australia?

Kildisheva OA, Erickson TE, Madsen MD, Dixon KW, Merritt DJ (2019) Seed germination and dormancy traits of forbs and shrubs important for restoration of north American dryland ecosystems. Plant Biology 21: 458–469?

Kildisheva OA, Dixon KW, Silveira FAO, Chapman T, Di Sacco A, Mondoni A, Turner SR, Cross AT (2020) Dormancy and germination: making every seed count in restoration. Restoration Ecology 28: S255–S264?

Koller D, Hadas A (1982) Water relations in the germination of seeds. Pages 401–431. In: OL Lange, PS Nobel, CB Osmond, H Ziegler (eds) Physiological plant ecology II. Encyclopedia of plant physiology. Springer-Verlag, Berlin?

Lewandrowski W, Erickson TE, Dalziell EL, Stevens JC (2018) Ecological niche and bet-hedging strategies for Triodia (R.Br.) seed germination. Annals of Botany 121: 367–375?

Liu Y, Horisawa S, Mukohata Y (2010) Effect of seed coating on plant growth and soil conditions: a preliminary study for restoration of degraded rangeland in the Qinghai-Tibetan Plateau, China. Grassland Science 56: 145–152?

Luna T, Wilkinson K, Dumroese RK (2014) Seed germination and sowing options. In: KM Wilkinson, TD Landis, DL Haase, BF Daley, RK Dumroese (eds) Tropical nursery manual: a guide to starting and operating a nursery for native and traditional plants. USDA Forest Service, Washington D.C.?

Madsen MD, Davies KW, Williams CJ, Svejcar TJ (2012) Agglomerating seeds to enhance native seedling emergence and growth. Journal of Applied Ecology 49: 431–438?

Madsen MD, Kostka SJ, Hulet A, Mackey BE, Matthew A (2013) Surfactant seed coating – a strategy to improve turfgrass establishment on water repellent soils. In: International Symposium on Adjuvants for Agrochemicals. pp. 205–210?

Madsen MD, Davies KW, Mummey DL, Svejcar TJ (2014) Improving restoration of exotic annual grass-invaded rangelands through activated carbon seed enhancement technologies. Rangeland Ecology & Management 67: 61–67?

Madsen MD, Davies KW, Boyd CS, Kerby JD, Svejcar TJ (2016a) Emerging seed enhancement technologies for overcoming barriers to restoration. Restoration Ecology 24: S77–S84?

Madsen MD, Hulet A, Phillips K, Staley JL, Davies KW, Svejcar TJ (2016b) Extruded seed pellets: a novel approach for enhancing sagebrush seedling emergence. Native Plants Journal 17: 230–243?

Madsen MD, Svejcar L, Radke J, Hulet A (2018) Inducing rapid seed germination of native cool season grasses with solid matrix priming and seed extrusion technology. PLoS One 13:e0204380?

Mangold JM, Sheley RL (2007) Effects of soil texture, watering frequency, and a hydrogel on the emergence and survival of coated and uncoated crested wheatgrass seeds. Ecological Restoration 25: 6–11?

McDonald MB (1998) Seed quality assessment. Seed Science Research 8: 265–275?

Menz MHM, Dixon KW, Hobbs RJ (2013) Hurdles and opportunities for landscape-scale restoration. Science 339: 526–527?

Merritt DJ, Dixon KW (2011) An unorthodox approach to forest restoration–response. Science 333: 36–37?

Merritt DJ, Dixon KW (2011) Restoration seed banks – a matter of scale. Science 332: 424-425?

Nevill PG, Cross AT, Dixon KW (2018) Ethical seed sourcing is a key issue in meeting global restoration targets. Current Biology 28: R1378–R1379?

Nicholas AMM, Franklin DC, Bowman DMJS (2009) Coexistence of shrubs and grass in a semi-arid landscape: a e study of mulga (Acacia aneura, Mimosaceae) shrublands embedded in fire-prone spinifex (Triodia pungens, Poaceae) hummock grasslands. Australian Journal of Botany 57: 396?

Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Reports 34:1281–1293?

Pearson DE, Valliant M, Carlson C, Thelen GC, Ortega YK, Orrock JL, Madsen MD (2019) Spicing up restoration: can chili peppers improve restoration seeding by reducing seed predation? Restoration Ecology 27: 254–260?

Pedrero-López LV, Rosete-Rodríguez A, Sánchez-Coronado ME, Mendoza-Hernández PE, Orozco-Segovia A (2016) Effects of hydropriming treatments on the invigoration of aged Dodonaea viscosa seeds and water-holding polymer on the improvement of seedling growth in a lava field. Restoration Ecology 24: 61–70?

Pedrini S (2019) Seed enhancement research for improving ecological restoration. Curtin University, Bentley, Australia?

Pedrini S, Merritt David J, Stevens J, Dixon K (2017) Seed coating: science or marketing spin? Trends in Plant Science 22: 106–116?

Pedrini S, Bhalsing K, Cross AT, Dixon KW (2018) Protocol development tool (PDT) for seed encrusting and pelleting. Seed Science and Technology 46: 393–405?

Pedrini S, Lewandrowski W, Stevens JC, Dixon KW (2019) Optimising seed processing techniques to improve germination and sowability of native grasses for ecological restoration. Plant Biology 21: 415–424?

Peraza-Villarreal H, Sánchez-Coronado ME, Lindig-Cisneros R, Tinoco-Ojanguren C, Velázquez-Rosas N, Cámara-Cabrales L, Orozco-Segovia A (2018) Seed priming effects on germination and seedling establishment of useful tropical trees for ecological restoration. Tropical Conservation Science 11:1–15?

Pérez DR, González F, Ceballos C, Oneto ME, Aronson J (2019) Direct seeding and outplantings in drylands of Argentinean Patagonia: estimated costs, and prospects for large-scale restoration and rehabilitation. Restoration Ecology 27: 1105–1116?

Powell A, Dulson J, Bewley J (1984) Changes in germination and respiratory potential of embryos of dormant Grand Rapids lettuce seeds during long-term imbibed storage, and related changes in the endosperm. Planta 162: 40–45?

Rajagopalan B, Lall U (1998) Interannual variability in western US precipitation. Journal of Hydrology 210: 51–67?

Richardson WC, Badrakh T, Roundy BA, Aanderud ZT, Petersen SL, Allen PS, Whitaker DR, Madsen MD (2019) Influence of an abscisic acid (ABA) seed coating on seed germination rate and timing of bluebunch wheatgrass. Ecology and Evolution 9: 7438–7447?

Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS (2019) Seed coating: a tool for delivering beneficial microbes to agricultural crops. Frontiers in Plant Science 10. https://doi.org/10.3389/fpls.2019.01357?

Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30?years of experience in the Brazilian Atlantic Forest. Biological Conservation 142: 1242–1251?

Rowse HR (1996) Drum priming: a non-osmotic method of priming seeds. Seed Science and Technology Technology 24: 587–597?

Rushing JB, Baldwin BS, Taylor AG, Owens VN, Fike JH, Moore KJ (2013) Seed Safening from herbicidal injury in switchgrass establishment. Crop Science 53: 1650–1657?

Seastedt TR, Hobbs RJ, Suding KN (2008) Management of novel ecosystems: are novel approaches required? Frontiers in Ecology and the Environment 6: 547–553?

Tarquis AM, Bradford KJ (1992) Prehydration and priming treatments that advance germination also increase the rate of deterioration of lettuce seeds. Journal of Experimental Botany 43: 307–317?

Taylor AG, Klein DE, Whitlow TH (1988) SMP: solid matrix priming of seeds. Scientia Horticulturae 37: 1–11?

Taylor AG, Prusinski J, Hill HJ, Dickson MD (1992) Influence of seed hydration on seedling performance. HortTechnology 2: 336–344?

Taylor AG, Allen PS, Bennett MA, Bradford KJ, Burris JS, Misra MK (1998) Seed enhancements. Seed Science Research 8: 245–256?

Taylor JB, KL, Armond DN, Madsen MD, Pearson DE, St. Clair SB (2020) Deterring rodent seed-predation using seed-coating technologies. Restoration Ecology rec.13158?

Turner SR, Pearce B, Rokich DP, Dunn RR, Merritt DJ, Majer JD, Dixon KW (2006) Influence of polymer seed coatings, soil raking, and time of sowing on seedling performance in post-mining restoration. Restoration Ecology 14: 267–277?

Wagner M, Pywell RF, Bullock JM, Heard MS, Knopp T (2011) The germination niches of grassland species targeted for restoration: effects of seed pre-treatments. Seed Science Research 21: 117–131?

Ward FH, Powell AA (1983) Evidence for repair processes in onion during storage at high seed moisture contents. Journal of Experimental Botany 34: 277–282?

Watkins A (2014) Optimisation of seed extrusion technology for mine-site rehabilitation. University of Western Australia, Perth, Australia?

Williams MI, Dumroese RK, Page-Dumroese DS, Hardegree SP (2016) Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions? Journal of Arid Environments 125: 8–15?

Yadav PV, Kumari M, Ahmed Z (2011) Chemical seed priming as a simple technique to impart cold and salt stress tolerance in capsicum. Journal of Crop Improvement 25: 497–503

(上下滑動查看)



期刊原文及中文版全文閱讀,見INSR官網(wǎng):

https://ser-insr.org/native-seed-standards

(點擊閱讀原文可查看)



本刊其他部分

學(xué)術(shù)譯介 | SER《生態(tài)修復(fù)中鄉(xiāng)土植物種子的國際原則和標(biāo)準(zhǔn)》1 ?

學(xué)術(shù)譯介 | SER《生態(tài)修復(fù)中鄉(xiāng)土植物種子的國際原則和標(biāo)準(zhǔn)》2 ?

學(xué)術(shù)譯介 | SER《生態(tài)修復(fù)中鄉(xiāng)土植物種子的國際原則和標(biāo)準(zhǔn)》3 ?

學(xué)術(shù)譯介 | SER《種子規(guī)劃,種源選擇與獲取》

學(xué)術(shù)譯介 | SER《生態(tài)恢復(fù)中鄉(xiāng)土植物種子的采集和生產(chǎn)》

學(xué)術(shù)譯介 | SER《種子貯藏:維持修復(fù)用的種子生活力和活力》

學(xué)術(shù)譯介 | SER《生態(tài)修復(fù)所用的種子的質(zhì)量保障:鄉(xiāng)土植物種子精選和檢驗》

學(xué)術(shù)譯介 | SER《休眠和萌發(fā):讓每顆種子都在生態(tài)修復(fù)中發(fā)揮作用》



Author

Simone Pedrini, Alma Balestrazzi, Matthew D. Madsen, Khiraj Bhalsing, Stuart P. Hardegree, Kingsley W. Dixon, Olga A. Kildisheva

https://onlinelibrary.wiley.com/doi/10.1111/rec.13184


Translated by

Fanxiu Sophie Qiu?


Reviewed by

Bingqin Shan


Edited by

Haolin Liu



編輯 / 天心

排版 / Kana

關(guān)注微信公眾號
免費查看免費推送

熱點推薦 熱門招標(biāo) 熱門關(guān)注