分享興趣,,傳播快樂(lè),,
增長(zhǎng)見(jiàn)聞,留下美好,。
親愛(ài)的您,這里是LearingYard學(xué)苑!
今天小編為您帶來(lái)文章
“喆學(xué)(108):精讀期刊論文
《需求不確定性對(duì)綠色技術(shù)采用的消費(fèi)者補(bǔ)貼的影響》
模型(1)”
歡迎您的訪問(wèn),!
Shareinterest,spreadhappiness,
increaseknowledge,andleavebeautiful.
Dear,thisistheLearingYardAcademy!
Today,theeditorbringsthe
"Zhexue(108):Intensivereadingofjournalarticles
"Theimpactofdemanduncertaintyonconsumersubsidiesforgreentechnologyadoption"
TheModel(1)"
Welcometovisit!
本期推文將從思維導(dǎo)圖、精讀內(nèi)容,、知識(shí)補(bǔ)充三個(gè)方面介紹精讀期刊論文《需求不確定性對(duì)綠色技術(shù)采用的消費(fèi)者補(bǔ)貼的影響》模型,。
ThisissueoftweetswillintroducetheModeloftheintensivereadingjournalarticle"TheImpactofDemandUncertaintyonConsumerSubsidiesforGreenTechnologyAdoption"fromthreeaspects:mindmap,intensivereadingcontent,andknowledgesupplement.
一、思維導(dǎo)圖(MindMaps)
二,、精讀內(nèi)容(Intensivereadingcontent)
在政府補(bǔ)貼背景下,,電動(dòng)汽車等
(略)場(chǎng)產(chǎn)品的供應(yīng)商需同時(shí)優(yōu)化定價(jià)(p)與生產(chǎn)量(q),構(gòu)成價(jià)格設(shè)定報(bào)童問(wèn)題,。研究通過(guò)分析加性和乘性需求不確定性模型(如線性與等彈性需求),,對(duì)比確定性需求下的決策,量化忽略需求不確定性的成本,。結(jié)果表明,,明確考慮需求波動(dòng)可優(yōu)化政府補(bǔ)貼水平、價(jià)格及產(chǎn)量,,為企業(yè)評(píng)估精準(zhǔn)需求預(yù)測(cè)的價(jià)值提供依據(jù),,揭示僅依賴平均需求決策的潛在風(fēng)險(xiǎn)。
Inthecontextofgovernmentsubsidies,suppliersofoligopolisticmarketproductssuchaselectricvehiclesneedtooptimizebothpricing(p)andproductionvolume(q),whichconstitutesaprice-settingnewsboyproblem.Thisstudyanalyzesadditiveandmultiplicativedemanduncertaintymodels(suchaslinearandisoelasticdemand)andcomparesdecisionsunderdeterministicdemandtoquantifythecostofignoringdemanduncertainty.Theresultsshowthatexplicitlyconsideringdemandfluctuationscanoptimizegovernmentsubsidylevels,prices,andoutput,provideabasisforcompaniestoevaluatethevalueofaccuratedemandforecasts,andrevealthepotentialrisksofrelyingsolelyonaveragedemanddecisions.
加性需求不確定性模型定義為D(z,?)=y(z)+?,,其中z=p?r為有效價(jià)格,,y(z)表示確定性需求(期望值),?為服從F?分布的隨機(jī)擾動(dòng)項(xiàng)。
TheadditivedemanduncertaintymodelisdefinedasD(z,?)=y(z)+?,wherez=p?ristheeffectiveprice,y(z)representsthedeterministicdemand(expectedvalue),and?isarandomdisturbancetermthatfollowstheF?distribution.
在政府補(bǔ)貼背景下,,供應(yīng)商需基于有效價(jià)格z=p-r優(yōu)化生產(chǎn)量q^*(p,r)和定價(jià)p^*(r),,政府則通過(guò)非凸優(yōu)化確定最優(yōu)補(bǔ)貼。定理1證明目標(biāo)約束在最優(yōu)時(shí)緊致,,確保解的有效性,。通過(guò)對(duì)比確定性需求(以期望值y(z)替代隨機(jī)需求)與隨機(jī)需求模型,分析指標(biāo)如補(bǔ)貼水平,、價(jià)格,、產(chǎn)量及利潤(rùn)、政府支出的差異,,揭示忽略需求不確定性對(duì)決策的影響,,為政策制定提供量化依據(jù)。
Inthecontextofgovernmentsubsidies,suppliersneedtooptimizeproductionvolumeq^*(p,r)andpricingp^*(r)basedontheeffectivepricez=p-r,andthegovernmentdeterminestheoptimalsubsidythroughnon-convexoptimization.Theorem1provesthatthetargetconstraintistightattheoptimaltime,ensuringthevalidityofthesolution.Bycomparingdeterministicdemand(replacingrandomdemandwithexpectedvaluey(z))withtherandomdemandmodel,thedifferencesinindicatorssuchassubsidylevel,price,outputandprofit,andgovernmentexpenditureareanalyzedtorevealtheimpactofignoringdemanduncertaintyondecision-making,providingaquantitativebasisforpolicymaking.
在一般需求函數(shù)y(p?r)下,價(jià)格設(shè)定報(bào)童問(wèn)題(如公式10)無(wú)法獲得閉式解,,需借助二分搜索等數(shù)值方法求解最優(yōu)價(jià)格psto,。假設(shè)條件(9)確保利潤(rùn)函數(shù)對(duì)價(jià)格的嚴(yán)格凹性,從而保證唯一最優(yōu)解,;若條件不滿足,,問(wèn)題仍可通過(guò)數(shù)值方法處理。對(duì)于線性需求,,關(guān)系式(15)提供了合理的充分條件,,簡(jiǎn)化分析。
Underthegeneraldemandfunctiony(p?r),thepricesettingnewsboyproblem(suchasEquation10)cannotobtainaclosed-formsolution,anditisnecessarytousenumericalmethodssuchasbinarysearchtosolvetheoptimalpricepsto.Assumptioncondition(9)ensuresthestrictconcavityoftheprofitfunctionwithrespecttotheprice,therebyensuringauniqueoptimalsolution;iftheconditionisnotmet,theproblemcanstillbehandledbynumericalmethods.Forlineardemand,relation(15)providesareasonablesufficientconditiontosimplifytheanalysis.
最優(yōu)生產(chǎn)量q?由預(yù)期需求y(z)與報(bào)童分位數(shù)(p?c)/p共同決定,,后者反映需求不確定性下的庫(kù)存策略,。政府通過(guò)調(diào)控有效價(jià)格z=p?r,確保預(yù)期銷量達(dá)到目標(biāo)采用水平Γ,。隨機(jī)需求下,,為避免缺貨,政府需激勵(lì)供應(yīng)商生產(chǎn)超出Γ的數(shù)量,,其差值由K(psto)量化,,體現(xiàn)需求波動(dòng)對(duì)生產(chǎn)決策的影響。
Theoptimalproductionquantityq?isdeterminedbytheexpecteddemandy(z)andthenewsboyquantile(p?c)/p,whichreflectstheinventorystrategyunderdemanduncertainty.ThegovernmentensuresthattheexpectedsalesvolumereachesthetargetadoptionlevelΓbyregulatingtheeffectivepricez=p?r.Underrandomdemand,inordertoavoidstockouts,thegovernmentneedstoincentivizesupplierstoproducemorethanΓ,andthedifferenceisquantifiedbyK(psto),whichreflectstheimpactofdemandfluctuationsonproductiondecisions.
最優(yōu)價(jià)格p滿足邊際成本等于邊際收益的條件(即c=p(1?1/Ed(p)),,其中Ed(p)為價(jià)格彈性,。盡管無(wú)閉式解,可證明需求不確定性會(huì)降低最優(yōu)價(jià)格及企業(yè)利潤(rùn),,凸顯風(fēng)險(xiǎn)環(huán)境對(duì)定價(jià)策略的抑制作用,。
Theoptimalpricepsatisfiestheconditionthatmarginalcostequalsmarginalrevenue(
(略),c=p(1?1/Ed(p)),whereEd(p)isthepriceelasticity.Althoughthereisnoclosed-formsolution,itcanbeshownthatdemanduncertaintyreducestheoptimalpriceandcorporateprofits,highlightingtheinhibitoryeffectoftheriskenvironmentonpricingstrategies.
定理1揭示了需求不確定性對(duì)最優(yōu)變量(有效價(jià)格z、產(chǎn)量q,、定價(jià)p及利潤(rùn)Π)的動(dòng)態(tài)影響,。通過(guò)量化噪聲幅度(如標(biāo)準(zhǔn)差σ)與關(guān)鍵指標(biāo)K(psto)的關(guān)系K(psto)≤0且隨噪聲增強(qiáng)單調(diào)遞減),可系統(tǒng)性比較隨機(jī)與確定性場(chǎng)景的差異,。例如,,均勻分布下K(psto)與σ呈線性關(guān)系(公式13),正態(tài),、指數(shù)等單峰分布亦類似。
Theorem1revealsthedynamicimpactofdemanduncertaintyontheoptimalvariables(effectivepricez,outputq,pricingp,andprofitΠ).Byquantifyingtherelationshipbetweenthenoiseamplitude(suchasstandarddeviationσ)andthekeyindicatorK(psto)(K(psto)≤0andmonotonicallydecreasingwiththeincreaseofnoise),thedifferencebetweenrandomanddeterministicscenarioscanbesystematicallycompared.Forexample,underuniformdistribution,K(psto)islinearlyrelatedtoσ(Formula13),andthesameistrueforunimodaldistributionssuchasnormalandexponential.
有效價(jià)格zsto=y?1(Γ?K(psto))隨噪聲幅度增加而降低,,其確定性場(chǎng)景(無(wú)噪聲)達(dá)到最大值z(mì)det=y?1(Γ),。生產(chǎn)量需額外補(bǔ)償∣K(psto)∣以應(yīng)對(duì)缺貨風(fēng)險(xiǎn),導(dǎo)致隨機(jī)需求下的產(chǎn)量與定價(jià)均低于確定性場(chǎng)景,,且差距隨噪聲擴(kuò)大而增大,。
Theeffectivepricezsto=y?1(Γ?K(psto))decreasesasthenoiseamplitudeincreases,anditsdeterministicscenario(nonoise)reachesthemaximumvaluezdet=y?1(Γ).Theproductionvolumeneedstobecompensatedadditionally|K(psto)|tocopewiththeriskofout-of-stock,resultinginthattheoutputandpricingunderrandomdemandarelowerthanthoseinthedeterministicscenario,andthegapincreasesasthenoiseincreases.
三、知識(shí)補(bǔ)充(Knowledgesupplement)
加性模型(AdditiveModel)是一種統(tǒng)計(jì)學(xué)和機(jī)器學(xué)習(xí)中常用的建模方法,其核心思想是將多個(gè)變量的影響以相加的方式:
(略)
Theadditivemodelisacommonlyusedmodelingmethodinstatisticsandmachinelearning.Itscoreideaistocombinetheeffectsofmultiplevariablesinanadditivemannertodescribetherelationshipbetweenthetargetvariable(dependentvariable)andmultiplepredictorvariables(independentvariables).Unliketraditionallinearmodels,additivemodelsalloweachvariabletoaffectthetargetvariablethroughnonlinearfunctions,sotheyaremoreflexibleindealingwithcomplexrelationships.
加性模型的特點(diǎn):
Characteristicsofadditivemodels:
1.靈活性:每個(gè)變量可以獨(dú)立使用非線性函數(shù)(如樣條函數(shù),、核平滑等),,無(wú)需假設(shè)全局線性關(guān)系。
1.Flexibility:Eachvariablecanusenonlinearfunctions(suchassplinefunctions,kernelsmoothing,etc.)independentlywithoutassumingagloballinearrelationship.
2.可解釋性:每個(gè)變量的貢獻(xiàn)可以單獨(dú)可視化,,便于理解變量如何影響目標(biāo)變量,。
2.Interpretability:Thecontributionofeachvariablecanbevisualizedseparately,makingiteasiertounderstandhowthevariableaffectsthetargetvariable.
3.降維能力:通過(guò)避免變量間的高階交互項(xiàng),減少了模型復(fù)雜度,。
3.Dimensionalityreductioncapability:Byavoidinghigh-orderinteractiontermsbetweenvariables,themodelcomplexityisreduced.
4.適用性:廣泛用于回歸和分類問(wèn)題(如廣義加性模型),。
4.Applicability:Itiswidelyusedinregressionandclassificationproblems(suchasgeneralizedadditivemodels).
常見(jiàn)的加性模型類型包括:
Commonadditivemodeltypesinclude:
1.廣義加性模型(GAM):通過(guò)鏈接函數(shù)(如logit、log)將加性項(xiàng)與目標(biāo)變量連接,,支持更廣泛的分布類型,。
1.Generalizedadditivemodel(GAM):connectsadditivetermstotargetvariablesthroughlinkfunctions(suchaslogit,log),supportingawiderrangeofdistributiontypes,
2.加性回歸樹(shù):以梯度提升機(jī)(如XGBoost、LightGBM)為代表,,通過(guò)疊加多個(gè)弱學(xué)習(xí)器(如決策樹(shù))逐步優(yōu)化預(yù)測(cè)結(jié)果,。
2.Additiveregressiontree:representedbygradientboostingmachines(suchasXGBoost,LightGBM),graduallyoptimizespredictionresultsbysuperimposingmultipleweaklearners(suchasdecisiontrees);
3.結(jié)構(gòu)化加性模型:針對(duì)時(shí)空數(shù)據(jù)等特殊結(jié)構(gòu),引入時(shí)間趨勢(shì)或空間平滑項(xiàng),,增強(qiáng)對(duì)數(shù)據(jù)特性的捕捉能力,。
3.Structuredadditivemodel:forspecialstructuressuchasspatiotemporaldata,introducestimetrendsorspatialsmoothingtermstoenhancetheabilitytocapturedatacharacteristics.
今天的分享就到這里了。
如果您對(duì)文章有獨(dú)特的想法,,
歡迎給我們留言,,讓我們相約明天。
祝您今天過(guò)得開(kāi)心快樂(lè),!
That'sallfortoday'ssharing.
Ifyouhaveauniqueideaaboutthearticle,
pleaseleaveusamessage,
andletusmeettomorrow.
Iwishyouaniceday!
翻譯:谷歌翻譯
參考資料:谷歌,、ChatGPT
參考文獻(xiàn):MaximeC.Cohen,RubenLobel,GeorgiaPerakis.TheImpactofDemandUncertaintyonConsumerSubsidiesforGreenTechnologyAdoption[J],ManagementScience,2016,62(5):
(略).
本文由LearningYard學(xué)苑整理發(fā)出,如有侵權(quán)請(qǐng)?jiān)诤笈_(tái)留言,!
文案|hzy
排版|hzy
審核|yyz
![](https://futom-sz.com/static/New/Images/zbcg.jpg)
關(guān)注微信公眾號(hào)
免費(fèi)查看免費(fèi)推送
尊貴的用戶您好,。上文****為隱藏內(nèi)容,
僅對(duì)《中國(guó)采購(gòu)招標(biāo)網(wǎng)》正式會(huì)員用戶開(kāi)放,。
如您已是本網(wǎng)正式會(huì)員請(qǐng)登陸,,
如非會(huì)員可咨詢客服。
![](/upload/replace/2024-12-17/20241217085719_cVzzc8.jpg) |
專屬客服:童敏 |
電話:15156071983 |
微信:15156071983 |